Analysis of Rayleigh–Plesset dynamics for sonoluminescing bubbles
نویسندگان
چکیده
Recent work on single-bubble sonoluminescence (SBSL) has shown that many features of this phenomenon, especially the dependence of SBSL intensity and stability on experimental parameters, can be explained within a hydrodynamic approach. More specifically, many important properties can be derived from an analysis of bubble wall dynamics. This dynamics is conveniently described by the Rayleigh–Plesset (RP) equation. Here we derive analytical approximations for RP dynamics and subsequent analytical laws for parameter dependences. These results include (i) an expression for the onset threshold of SL, (ii) an analytical explanation of the transition from diffusively unstable to stable equilibria for the bubble ambient radius (unstable and stable sonoluminescence), and (iii) a detailed understanding of the resonance structure of the RP equation. It is found that the threshold for SL emission is shifted to larger bubble radii and larger driving pressures if surface tension is increased, whereas even a considerable change in liquid viscosity leaves this threshold virtually unaltered. As an enhanced viscosity stabilizes the bubbles to surface oscillations, we conclude that the ideal liquid for violently collapsing, surface-stable SL bubbles should have small surface tension and large viscosity, although too large viscosity (ηl & 40ηwater ) will again preclude collapses.
منابع مشابه
Inertially driven inhomogeneities in violently collapsing bubbles: the validity of the Rayleigh–Plesset equation
When a bubble collapses mildly the interior pressure field is spatially uniform; this is an assumption often made to close the Rayleigh–Plesset equation of bubble dynamics. The present work is a study of the self-consistency of this assumption, particularly in the case of violent collapses. To begin, an approximation is developed for a spatially non-uniform pressure field, which in a violent co...
متن کاملPhase diagrams for sonoluminescing bubbles
Sound driven gas bubbles in water can emit light pulses. This phenomenon is called sonoluminescence ~SL!. Two different phases of single bubble SL have been proposed: diffusively stable and diffusively unstable SL. We present phase diagrams in the gas concentration versus forcing pressure state space and also in the ambient radius versus gas concentration and versus forcing pressure state space...
متن کاملCavitating Flow Simulations Based on the Bubble Dynamics
A new numerical method for simulating cavitating flows is developed. The cavitation is modeled with the dynamics of bubbles which radii change with Rayleigh-Plesset equation. The pressure inside of a bubble is modeled from the results of very precise direct simulation of single bubble motion. The bubbles are also allowed to have slip velocities so that the bubble accumulation could be simulated...
متن کاملNumerical Simulation of Scaling Effect on Bubble Dynamics in a Turbulent Flow around a Hydrofoil
A Lagrangian-Eulerian numerical scheme for the investigation of bubble motion in turbulent flow is developed. The flow is analyzed in the Eulerian reference frame while the bubble motion is simulated in the Lagrangian one. Finite volume scheme is used, and SIMPLEC algorithm is utilized for the pressure and velocity linkage. The Reynolds stresses are modeled by the RSTM model of Launder. Upwind ...
متن کاملComparison of the Rayleigh–Plesset and Gilmore Equations and Additional Aspects for the Modelling of Seismic Airgun Bubble Dynamics
Seismic airguns are commonly used in geophysical exploration. More recently, they are also being used as an alternative to underwater explosions for the shock testing of defence vessels. The study of the dynamics of the bubble produced by a seismic airgun is beneficial in understanding the resultant pressure field and shockwave. The Rayleigh–Plesset and Gilmore equations for modelling spherical...
متن کامل